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Abstract Oligonucleotides are increasingly used in clinical applications.

RNA-based therapeutics include inhibitors of mRNA translation, agents of RNA

interference, ribozymes, and aptamers targeting various molecular targets. Chal-

lenges with the delivery, specificity, and stability of these therapeutics have

spawned the development of chemically modified oligonucleotides. In this chapter,

we will describe modifications improving delivery and stability of RNA molecules

in human cells. Because the most of the cell transfection methods using oligonu-

cleotide complexes with cationic lipids revealed to be toxic, specific modifications

and various conjugates have been recently developed to promote the carrier-free
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cellular uptake of therapeutic oligonucleotides. Nucleic acids (NA) are relatively

unstable in cytosol due to a plethora of nucleases; therefore, various modifications

can be introduced to design nuclease-resistant molecules. These modifications

should not interfere with the therapeutic activity and intracellular localization of

the oligonucleotides. The influence of nucleotide modifications on the siRNA

efficiency and on the anti-replicative activity of therapeutic RNA imported into

human mitochondria is discussed.

Keywords Delivery • Oligonucleotide therapeutics • Lipophilic conjugates •

Modified oligonucleotides • Mitochondrial diseases • Anti-replicative RNA

1 Introduction: Nucleic Acids’ Delivery Systems

Synthetic oligonucleotides and their conjugates are widely used in various fields of

molecular biology, nanobiotechnology, and medicine as tools for fundamental and

applied research, as well as promising drugs for diagnosis and treatment of viral and

genetic diseases, cancer, and other diseases of humans and animals (Ginn

et al. 2013; Tan et al. 2011). Development of oligonucleotides as potential thera-

peutic agents is limited by low efficiency of penetration into target cells due to their

large size, negative charge, and low stability. Many systems of gene targeting have

been developed to overcome these barriers. Delivery vectors can be divided into the

two major groups: viral and nonviral systems (Kay 2011). Each type has its own

advantages and disadvantages. Systems based on viral vectors have efficient mech-

anisms for entering the cell, escaping endosomal entrapment, and translocating

gene cargo to the nucleus. Despite of a high efficiency of targeting, several

limitations are associated with viral systems: insertional mutagenesis, immune

response to viral proteins, tumorigenesis, and cytotoxic effects (Thomas

et al. 2003; Walther and Stein 2000).

The shortcomings in viral vectors stimulated development of nonviral delivery

carriers, which can be readily synthesized and modified to facilitate biocompati-

bility. Improving of nonviral delivery systems relies on the detailed understanding

of the barriers associated with the nucleic acids targeting into cells. The successful

system for nucleic acids’ (NA) delivery should meet a number of requirements:

biocompatibility and low cytotoxicity, resistance to nuclease activity, possibility of

endosomal escape, and capability of entering the appropriate cellular compartment.

Mammalian cells internalize extracellular macromolecules by the endocytosis

leading to formation of vesicle-like structures that fuse with early endosomes

(De Haes et al. 2012). Thus, the efficacy of transfection and the expected effect

depend on both the ability of a carrier to efficiently deliver the NA cargo with

minimal toxicity and its potential to overcome the endosomal compartmentalization

(Huotari and Helenius 2011). To facilitate NA escape into the cytosol, various

compounds have been used in combination with the delivery vectors.
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Endosomolytic agents vary in type (natural or synthetic compounds) as well as in

their mechanisms of action, which include the endosomal membrane destabilization

(TAT HIV, KALA, or GALA peptides), pore formation (e.g., listeriolysin O toxin

produced by Listeria monocytogenes, gp41HIV protein), and endosomal disruption

via the “proton sponge” mechanism (e.g., PEI, ammonium chloride, chloroquine,

methylamine) (Varkouhi et al. 2011).

Nonviral delivery systems can be carrier-mediated or carrier-free. The carrier-

mediated NA targeting systems can be further subdivided into the three main

groups:

(a) Polymeric systems, in which NA form complex with a polymer through charge

interactions between the positive groups of the polymer and the negatively

charged NA (Oliveira et al. 2015)

(b) Lipidic systems, in which cationic lipids interact with negatively charged NA

and condensate or encapsulate them (Balazs and Godbey 2011)

(c) Inorganic carriers involving various materials such as gold nanoparticles, silica,

and carbon nanotubes, which can bind NA through different mechanisms (Dizaj

et al. 2014)

In this chapter we will describe another approach for delivery of oligonucleo-

tides, which consists in conjugation of NA molecules with targeting ligands.

2 Carrier-Free Targeting Systems

2.1 Nucleic Acids’ Conjugation with Targeting Ligands

The transporting molecule should be capable of binding to the cell surface or to

specific receptors on it and inducing endocytosis (Juliano et al. 2013). The ligand

molecule can be attached to NA directly or through a linker. Depending on the type

of oligonucleotide and its purpose, the linker can be connected via the 20-, 30-, or
50-terminus, the C5 atom of pyrimidine bases, the C8 atom of adenine, the exocyclic

amino group of guanine, or an internucleoside phosphate (Winkler 2013). Conju-

gated NA cargo needs additional chemical modifications shielding it from nucle-

ases (see Sect. 3 for details). For most carrier-free systems, the endosomal escape is

passive, which reduces the efficiency of transfection; thus, there is a necessity to use

additional compounds to promote the release of oligonucleotides from endosomes

before they are degraded and recycled. However, the simplicity of design and the

small size, in comparison with nanoparticles, ensure a lower toxicity and a better

biodistribution of NA conjugates. Carriers with sizes larger than 5 nm can only be

used for NA delivery to certain types of tumors and to normal tissues with

fenestrated endothelia, such as the liver and spleen, whereas conjugates can also

reach many other types of tissues (Juliano et al. 2009).
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Various delivery systems through covalent attachment of addressing ligands to

the NA cargo have been developed: carbohydrate–NA conjugates, peptide–NA

conjugates, antibody–NA conjugates (Uckun et al. 2013), aptamer conjugates,

and lipid–NA conjugates. Here, we will briefly characterize the main types of

conjugates and provide a more detailed analysis of lipophilic molecules.

2.2 Conjugates with Carbohydrates

It had been demonstrated that the asialoglycoprotein receptor located on the surface

of hepatocytes can bind diverse chemotherapeutic agents, including galactose

glycoproteins, and helps their internalization by endocytosis (Stockert 1995). This

permitted the use of carbohydrate-based vectors for addressed NA delivery. For

instance, 50-glycoconjugates of oligonucleotides have demonstrated excellent cell-

type specificity and cellular uptake in the nanomolar concentration range (Biessen

et al. 1999). Triantennary N-acetyl galactosamine conjugates (Fig. 1) facilitate the

targeted delivery of siRNAs and antisense oligonucleotides to hepatocytes in vivo

(Nair et al. 2014; Prakash et al. 2014).

2.3 Conjugates with Peptides and Aptamers

Peptides used for NA delivery can be divided into the two classes. The first group

includes cell-targeting peptides, specific ligands for surface receptors

overexpressed in diseased cells (Juliano et al. 2013; McGuire et al. 2014; Vives

et al. 2008). For instance, bombesin peptide (a ligand for the gastrin-releasing

peptide receptor) and a specific peptide for the IGF1R receptor overexpressed in

Fig. 1 Triantennary N-acetyl galactosamine-nucleic acid conjugate
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breast cancer were conjugated with an siRNA and an antisense oligonucleotide,

respectively, for targeted delivery (Cesarone et al. 2007; Ming et al. 2010). The

second group comprises the cell-penetrating peptides (CPPs). These peptides are

short, amphiphilic, and enriched with the basic amino acids. CPPs can enter cells by

two ways, either via endocytosis through electrostatic interactions with negatively

charged glycosaminoglycans, similar to cationic polymers (Juliano et al. 2008), or

through membrane translocation. The choice of the entry pathway is dependent on

the CPP sequence, concentration, and the temperature (Boisguerin et al. 2015).

CPPs can also promote the endosomal escape.

Aptamers are small nucleic acids that fold into a well-defined structure, which

determines their affinity and specificity for target molecules. They can be selected

from pools of randomized sequences by SELEX (Systematic Evolution of Ligands

by Exponential Enrichment) approach (Tuerk and Gold 1990). Aptamers can be

evolved to bind small molecules but also nucleic acids, carbohydrates, and soluble

or membrane proteins. For instance, so-called escort aptamers recognize cell

surface receptors specific for the certain cell type and can be used for the targeted

delivery of therapeutic agents. One of the most known aptamers of this type is the

20-F-RNA aptamer against prostate-specific membrane antigene (PSMA). After

binding to its target, the anti-PSMA aptamer can be internalized; therefore, this

escort aptamer is widely used now as a delivery vehicle for a number of antitumor

drugs, including siRNAs and shRNAs. A comprehensive overview of the therapeu-

tic nucleic acids delivery strategies using aptamers can be found in recently

published reviews (Aaldering et al. 2015; Davydova et al. 2011; Ming and Laing

2015; Tan et al. 2011; Zhou and Rossi 2011).

2.4 Lipid-Containing Conjugates

One of the most popular methods of delivery of conjugated oligonucleotides is the

use of lipids. Various lipophilic molecules have been conjugated to oligonucleo-

tides, including phospholipids, fatty acids, bile acids (e.g., cholic acid), cholesterol,

and fat-soluble vitamins (as α-tocopherol, folic acid) (Bhat et al. 1999; Guzaev et al.
2002; Raouane et al. 2012). The structures of these compounds are shown in Fig. 2.

Among those, cholesterol, studied by various groups for the past 25 years since the

pioneering work of Letsinger et al. (1989), is by far the most extensively charac-

terized addressing agent.

Cholesterol is an essential lipid of cell membranes of many eukaryotes, which

make it attractive for delivery of various therapeutic molecules. Intravenous admin-

istration of cholesterol-containing siRNA conjugates resulted in significant levels

of their accumulation in liver, heart, kidney, adipose, and lung tissues (Soutschek

et al. 2004). In another study, accumulation of a cholesterol-conjugated siRNA in

brain cells upon intrastriatal injection has been demonstrated (DiFiglia et al. 2007).

These and other studies show that cholesterol conjugation significantly improves

delivery of NA. Cellular uptake of cholesterol-conjugated oligonucleotides in vivo
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depends on the complex formation between the conjugates and the high-density or

low-density lipoproteins circulating in the bloodstream. Binding of the complexes

to the lipoprotein receptors leads to the uptake of the conjugates by the various

tissues (Wolfrum et al. 2007).

Conjugates of oligonucleotides with cholesterol have been developed by many

research groups, wherein attachment to an oligonucleotide was performed mainly

through either the 50- or the 30-termini. Cholesterol can be attached through the

unique hydroxyl group of the steroid either directly (MacKellar et al. 1992; Seo

et al. 2006) or via various aliphatic linkers. Examples of linear linkers are molecules

based on diamines (Letsinger et al. 1989), amino alcohols with various lengths of

aliphatic chain (Lorenz et al. 2004; Petrova et al. 2011), and polyethylene glycol

(Kubo et al. 2007) (Fig. 3).

Another approach to the synthesis of cholesterol-conjugated oligonucleotides is

introducing the steroid residue at the 50- or 30-terminus of the oligonucleotide chain

through branched linkers containing several reactive groups. The compounds used

Fig. 2 Various lipophilic molecules used for conjugation with oligonucleotides
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as the branched linkers include glycerol (Ueno et al. 2008; Vu et al. 1993),

2-aminobutyl-1,3-propanediol (Rump et al. 1998), L-hydroxyproline (Manoharan

et al. 2005; Reed et al. 1991), lysine (Stetsenko and Gait 2001), serine (Chaltin

et al. 2005), and serinol (Manoharan et al. 2005) (Fig. 4).

A cholesterol residue may negatively affect the therapeutic effect by anchoring

the NA cargo to the lipid bilayer membrane or by reducing the efficiency of

annealing with the target molecule. To alleviate these effects, the cholesterol

residue can be conjugated to the sense chain in siRNA, or it can be added through

a cleavable arm, usually containing a disulfide bond (Boutorine and Kostina 1993;

Chen et al. 2010; Manoharan et al. 2005; Moschos et al. 2007; Oberhauser and

Wagner 1992) (Fig. 5).

The length of the linker can influence the cellular uptake; the optimal efficiency

had been achieved for the RNA chain and the cholesterol residue spaced by 6–10

methylene units (Petrova et al. 2011). After penetration of the siRNA conjugates

into cells, they affect the target gene expression, suggesting that they are able to

escape from endosomes. So far, the mechanism of their endosomal release is still

not understood, although it was hypothesized to be related to intracellular traffic of

cholesterol (Maxfield and Wustner 2013).

Fig. 3 Cholesterol conjugated with oligonucleotides directly (a), through linear linkers based on

ethylenediamine (b), amino alcohols with various lengths of aliphatic chain (c), or polyethylene

glycol (d)
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Fig. 4 Cholesterol conjugated with oligonucleotides through branched linkers containing the

following compounds: (a–c) glycerol, (d) 2-aminobutyl-1,3-propanediol, (e, f) L-hydroxyproline,

(g) lysine, (h) serine, (i) serinol
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3 Modifications Improving the Stability of Nucleic Acids

After penetration in the cell and release into the cytoplasm, NA become vulnerable

to nuclease attack. This complication can be circumvented if the oligonucleotide

cargo is chemically modified to improve its stability. Chemical modifications of

nucleic acids can be classified into three distinct categories: internucleoside linkage

modifications, sugar modifications, and base modifications (the latter type can

affect the thermal stability of the duplex but is not used for NA stabilization and

is not considered here). The different types of modifications may be used within the

same molecule, depending on the desired effect. We present the structure and the

properties of the most used and promising modifications (Table 1).

Among oligonucleotide derivatives listed in Table 1, there are modifications,

which are well known and have been recommended for therapeutic use; one can

mention phosphorothioates, phosphorodiamidate morpholino oligomers (PMO),

peptide nucleic acids (PNA), and different types of 20-modified oligonucleotides

Fig. 5 Cholesterol conjugated with oligonucleotides through various cleavable linkers containing

disulfide bond
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Table 1 Chemical modifications improving nucleic acids’ stability

Modification Structure Properties References

Modification of internucleoside link

Phosphorothioate Highly resistant to

nuclease cleavage;

decreases the duplex

stability; binds to

serum albumin;

toxic

Bennett and

Swayze

(2010),

Milligan

et al. (1993)

N30 !P50

Phosphorodiamidate

morpholino oligo-

mers (PMO)

Confers resistance

to nucleases;

increases Tm of

duplex by 2 �C per

residue for an RNA

target

Gryaznov

et al. (1995),

Heidenreich

et al. (1997)

Boranophosphate Confers high nucle-

ase resistance

Hall

et al. (2004)

Amide-

internucleosidic

linkage

Confers nuclease

resistance; leads to

the duplex Tm
change from �4 to

+0.9 �C per residue

for an RNA target

De

Mesmaeker

et al. (1994),

Mutisya

et al. (2014)

(continued)
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Table 1 (continued)

Modification Structure Properties References

Phosphonoacetate Confers nuclease

resistance;

uncharged;

decreases Tm of

duplex by 1.2 �C per

residue for an RNA

target

Sheehan

et al. (2003)

Morpholino Highly resistant to

nuclease cleavage;

uncharged

Summerton

and Weller

(1997)

Peptide nucleic acid

(PNA)

Highly resistant to

nuclease cleavage;

uncharged;

increases Tm of

duplex by 1 �C per

residue for a DNA

target

Shabi

et al. (2006)

SATE (S-acyl-2-

thioethyl-

phosphotriesters)

Highly resistant to

nuclease cleavage;

uncharged; revers-

ible protecting

group (cleaved off

by thioesterase in

the cytoplasm)

Meade

et al. (2014)

(continued)
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Table 1 (continued)

Modification Structure Properties References

Phosphoryl guani-

dine (PG)

Highly resistant to

nuclease cleavage;

uncharged when

fully modified

Kupryushkin

et al. (2014),

Lebedeva

et al. (2015)

Sugar modifications

20-OMe-RNA Confers nuclease

resistance; increases

the duplex stability;

decreases the innate

immune response

induction

Bennett and

Swayze

(2010)

20-OMOE-RNA Confers nuclease

resistance;

increases Tm of

duplex by 2 �C per

residue for an RNA

target

20F-RNA Confers nuclease

resistance; increases

Tm of duplex by

2.2 �C per residue

for an RNA target

Kawasaki

et al. (1993)

Locked nucleic acid

(LNA)

Confers nuclease

resistance; increases

Tm of duplex by

5.1 �C per residue

for an RNA target

and by 4 �C per res-

idue for a DNA

target

Koshkin

et al. (1998)

(continued)

330 I. Dovydenko et al.



(Wickstrom 2015). Another group consists of recently developed promising

modifications of oligonucleotide structure whose potential should be studied

in details in nearest future. Such modifications include amide-internucleosidic

linkage, S-acyl-2-thioethyl-phosphotriesters (SATE), or phosphoryl guanidines

(PG) incorporated instead of parent phosphodiester moieties. The derivatives and

analogues listed in Table 1 can allow to design oligomers characterized by the

electroneutral backbone, drastically increased nuclease resistance, and, therefore,

enhanced therapeutic potential.

Modifications should be introduced with caution as they may change NA

properties, such as toxicity and binding affinity for RNA/DNA targets. For instance,

it was found that the increased amount of modified nucleotides enhanced the

stability of siRNA in the presence of serum, but reduced its silencing activity.

The targeted modification of nuclease-sensitive sites (mostly UpA, CpA, and UpG

sites) improved the stability of siRNA and prolonged the silencing effect with

minimal loss of silencing efficiency (Volkov et al. 2009). Moreover, 20-O-methyl

analogues of ribonucleotides introduced in the nuclease-sensitive sites of long

dsRNA prevented the activation of innate immunity response without the loss of

silencing efficiency and specificity (Gvozdeva et al. 2014).

4 Modifications of the Therapeutic RNA Imported into

Human Mitochondria

Defects in human mitochondrial genome can cause a wide range of clinical

disorders, mainly neuromuscular diseases. Most of deleterious mitochondrial muta-

tions are heteroplasmic, meaning that wild-type and mutated forms of mtDNA

coexist in the same cell (Pinto and Moraes 2014). Therefore, a shift in the propor-

tion between mutant- and wild-type molecules could restore mitochondrial

Table 1 (continued)

Modification Structure Properties References

Unlocked nucleic

acid (UNA)

Decreases Tm of

duplex by 5–10 �C
per residue for an

RNA target and by

7–10 �C per residue

for a DNA target

Campbell

and Wengel

(2011)

Xylo nucleic acid

(XNA)

Confers nuclease

resistance;

decreases duplex

stability

Poopeiko

et al. (2003)

X—H (DNA) or OH (RNA); B—bases: A, C, G, T, U
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functions. The anti-replicative strategy aims to induce such a shift in heteroplasmy

by mitochondrial targeting specifically designed molecules in order to inhibit

replication of mutant mtDNA. Recently, we developed mitochondrial RNA vectors

(Kolesnikova et al. 2011) that can be used to address anti-replicative

oligoribonucleotides into human mitochondria and impact heteroplasmy level.

The observed effect was however transient, probably due to a rapid degradation

of RNA molecules (Comte et al. 2013). Various chemically modified nucleotides

have then been introduced in anti-replicative oligoribonucleotides to improve their

stability, namely, nucleotides substituted at the 20-hydroxyl group with 20-OMe,

20-F, and 20-deoxy in combination with terminus capping chemistry. The most

important increase of anti-replicative molecules’ lifetime can be achieved by

using synthetic RNA–DNA chimeric molecules or by ribose 20-O-methylation

in nuclease-sensitive sites. The presence of “inverted” 30-30 thymidine at the

30-terminus and modifications of 20-OH ribose moiety did not prevent the mito-

chondrial uptake of the recombinant molecules. Nevertheless, the modified oligo-

nucleotides did not cause a significant effect on the heteroplasmy level in

transfected transmitochondrial cybrid cells bearing a pathogenic mtDNA deletion,

proving to be less efficient than nonmodified RNA molecules (Tonin et al. 2014).

One can hypothesize that the C30-endo sugar conformation and 30-30 inverted

nucleotides might be recognized by the replisome or by other mitochondrial

nucleoid proteins as nonnatural and quickly eliminated.

To decrease the toxicity of the cell transfection procedure and create an approach

of carrier-free targeting of various anti-replicative RNAs into living human cells,

we designed conjugates containing a cholesterol residue. Because cholesterol could

stall the mitochondrial import of therapeutic anti-replicative RNA due to attach-

ment to the mitochondrial membranes, we developed the protocol of chemical

synthesis of oligoribonucleotides conjugated with cholesterol residue through

cleavable covalent bonds. Conjugates containing pH-triggered hydrazone bond

(Fig. 6a) were shown to be stable during the cell transfection procedure and rapidly

cleaved in acidic endosomal cellular compartments. RNAs conjugated to choles-

terol through a hydrazone bond were characterized by efficient carrier-free cellular

uptake and partial co-localization with mitochondrial network. Moreover, the

imported oligoribonucleotide designed to target a pathogenic point mutation in

mitochondrial DNA was able to induce a decrease in the proportion of mutant

mitochondrial genomes (Dovydenko et al. 2015).

We suppose that anti-replicative RNA conjugated to cholesterol can be inter-

nalized by the endocytosis pathway (Fig. 6b). Thereafter, the hydrazone bond

between RNA and cholesterol moieties would be cleaved in the acidic conditions

of the late endosomes, and the endosomal escape can be induced by destabilization

of endosomal lipid bilayer, due to the positively charged hydrazide group which is

formed by the conjugate hydrolysis. Released RNA molecules can be partially

degraded in the cytoplasm, but still partially targeted into mitochondria due to the

presence of a structural determinant for mitochondrial import.

To improve the in vivo delivery of cholesterol-RNA conjugates, we are planning

to design and synthesize conjugated molecules containing various nucleotide and
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internucleotide bond modifications, which can improve the stability of anti-

replicative RNA moieties and promote their tissue distribution and cellular uptake.

5 Conclusion and Future Prospects

As one can deduce from the examples discussed above, there are various nucleotide

modifications that can protect RNA molecules introduced into human cells against

nucleolytic degradation. Another type of modification, the conjugation of oligonu-

cleotides to the ligands, which can be internalized into the cell by natural transport

mechanisms, is a promising approach to overcome the problem of their inefficient

delivery to target cells and tissues. Further development of the oligonucleotide

Fig. 6 Cell delivery of RNA conjugated to cholesterol through cleavable linker. (a)

Oligoribonucleotide conjugated with cholesterol residue through pH-triggered hydrazone bond.

The point of the cleavage in acidic conditions is shown by an arrow. (b) Schematic representation

of the cell delivery of RNA conjugated to cholesterol through cleavable linker. RNA is represented

by a helix; cholesterol residue is highlighted in purple. See text for the details
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modification technology will allow creating novel therapeutic molecules charac-

terized by high stability, low toxicity, and efficient delivery to various human

tissues.
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